Counting Bad Apples

Exclusion Netting in the Control of Codling Moth

Ben Bentele

Organic Agriculture Research Station

on Rogers Mesa

Colorado State University

Outline

- Background -
- Economics -
- Data & Discussion -
- Further Research -
 - Synthesis -

Background & Focus

As part of a CDA specialty crop block grant, I've spent the last 2 years studying codling moth dynamics in Organic Orchards on Rogers Mesa & the broader North Fork valley.

> Only 1 orchard employed netting in 2020. 3 orchards netted in 2021.

Next year, ~100 acres will be netted across 6 orchards.

The research began broadly, but has focused on netting as the most hopeful IPM technique.

A History of Pesticide Resistance

Codling Moth's first insecticidal resistance was recorded in the Grand Valley (to Lead Arsenate!)

CM acquired resistance to the Organic pesticide Granulovirus after just 2 decades in Europe

We haven't verified a local resistance but should

prepare for it

Asw to Fight the Codling Moth.

By Prof. C. P. Gillette.

dany orchardists spray for the c moth and still grow very wormy: The writer knows of an orchat the Experiment Station that w 'd with an arsenical mixture th st summer and in which ' 'of the fruit was wo

> The first year ,000 worms from 30 , 500 and this year 13 luded an additional the trees. One pound of to 50 gallons of wa

Nets aren't new

They are commonly used to protect Grape & Honeyberry from bird damage

Drape Netting

Uses a finer mesh net than grape netting (originally made for hail protection)

Covers individual rows

Decades of use in Europe, South Africa & Australia

Increasing use in Washington state for sunburn protection

Net Wiz

Made in Australia

4 hydraulic hookups: 2 for boom, 2 for the retrieval wand

50 Horsepower

Preferably a crew of 5

- • • •
- • • •
- • • •
- - - -
- • • •
- • • •
- • • •
-
-
-
- • • •
-
- • • •
- • • •

Economics

Quick Numbers

\$4000 1 acre of netting material (10 year lifespan)

\$18,000 Net Wiz netting machine (One machine can net ~50 acres per season)

Possible to reduce CM damage to <2% & total culls to <10% in the first year

Reduce pesticide expenses

The labor cost associated with netting is < than the cost of pesticides + spray labor

1st year - Cut out CYDX usage 2nd year - Stop using Entrust

(Can continue foliar nutrient programs)

Return on Investment

A simplification of the Harvest needed to break even on an acre:

• $T^*(P_F - P_C) \times (\%c - \%N) - 4000

Where:

- T = Total Harvest (in pounds)
- $P_F = Fancy Price$
- $P_c = Cull Price$
- %_c = No nets Cull %
 %_N = Nets Cull %

Better to see visually ->

20

Bins Picked (per acre) – 75% Cull – 50% Cull – 25% Cull

30

40

50

-5000 ^L 0

10

ROI Projections

Each series represent a different cull % prior to netting & a 10% total cull rate afterwards

Honeycrisps:

10x profit margin for Fancy price versus Cull price

Galas: 5x profit margin

Projections including a NetWiz

What harvest will pay off 10 acres of netting (\$40,000) + a NetWiz (\$18,000)?

Cherries?

Cherries have an even higher price point

An orchard in Paonia tried netting their sweet cherries this past year

Estimate they recouped ½ loss from bird damage ~10% culls

Nets are a variety dependent solution

- Nets have proven cost effective for HoneyCrisp & Gala
 Return on Investment possible in the first year
- Long ROI for low value varieties

-

- More research needed for vigorous / late season varieties like Fuji
 Prone to Wooly Aphid Infestations
 - **7** 1
- Bonus: Prof Einhorn's research indicates that
 - Honeycrisp can be thinned with early netting
 - Will verify results at OARS in 2022

Data & Discussion

First Year netting experience:

Galas

- 2020 Unnetted -
- Full rate of entrust
- CydX every week
- >70% culls at packout
- It's uneconomical to pay for sorting labor over 70% culls
 - So they sent it in bulk to the juicer

-

First Year netting experience:

Galas

- 2021 Fully Netted -
 - No thinning
- No Mating Disruption No CYDX
 - Half Rate Entrust
- <2% CM damage at packout
 (10% total culls)
- 17x marketable apples Only 1.6x larger harvest in 2021

-

CM Population Dynamics

- Nets were installed the week between 5/17 & 5/24
 - Sharp decrease in trap counts after netting
- Attempted to trap inside the net but never caught CM

An Unnetted Comparison

- This is a nearby unnetted orchard
- Smoother Gaussian tail to the distribution

Flight Pattern Disrupted

Insects are still found underneath the net

But if they can't find the trap outside - they can't find each other to mate.

Think about moth flight patterns – not exactly the most agile creatures

Nets also make it more difficult to lay eggs

Moth Populations under the nets?

- Possible for large trees
 - However, damage is contained to that row
- Example: a Parcel with partial netting ->
 - Mature Open vase trees
 - High CM pressure from neighboring orchards
 - High trap count just before netting
 - (Netted by June 1)

-

- Had 1 row with >33% damage prior to August thinning
 - Highlights the continued importance of monitoring

What if apples touch the net?

Higher probability of CM damage (from moths landing on the net outside)

Defects from rubbing on the net

Risk of hail damage / sunburn

Better to prune fruit away from the net

Research Station Trap Count

We left one row of Honeycrisp unnetted

100% loss by mid July - from CM & hail

Data from the trap in this row is shown at right for 2020 & 2021 ->

Less of a population, but not the drastic reduction seen in the above slides

Research Station Honeycrisp Harvest

I sorted about half of the honeycrisp harvest at OARS (1/2 acre - 5 out of 10 rows)

- Three rows averaged -1.2% CM damage out of a total 5136 apples (9.91% total culls)

Two rows near the unnetted row averaged –
 9.4% CM damage out of 3269 apples

Even with a short crop this year – nets paid themselves off in the first year

Fuji & Cameo netted harvest

Too small of a crop this year to be worth netting

But we did anyway – & saw <1% CM damage at harvest

Both varieties had wooly aphid infestations

Further Research

While Rosy Apple Aphids cleared up by the heat of August,

Wooly Aphids were a problem for Fujis.

Wooly Aphids

Research from WSU observed 100x the incidence of wooly aphids under netting than outside

No wooly aphids observed on Honeycrisp

Reflective Blushing

Net Coloration

Bullhorns

While open-vase architecture needs no extra infrastructure,

High Density Plantings need 'bullhorns'

Netting will stunt upward growth for young trees if laid on-top of them

Unintended Consequences

Insects, birds & deer can get caught in the nets

Importance in a warming world?

Mixed research on the effect of nets on temperature & humidity

But consensus on less wind & increased soil moisture

Lower fruit skin temperature (thus less sunburn)

•	•	•	•	•	
•	•	•	•	•	Synthesis
•	•	•	•	•	o j meneoro
•	•	•	•	•	
•	•	•	•	•	Netting is a variety & climate dependent solution
•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	Quick return on investment for high value crops
•	•	•	•	•	•
•	•	•	•	•	So effective it could be useful for conventional orchards
•	•	•	•	•	
•	•	•	•	•	•
•	•	•	•	•	The research continues!
•	•	•	•	•	

Thanks!

Special Thanks & gracias a Arturo Jimenez

- • • •
- • • •
- • • •
-
- • • •
- • • •
- • • •
-
- • • •
- • • •
-
-
- • • •
- • • •

