Organic solutions to peach Cytospora canker

Brad Tonnessen Scientist, WCRC-RM Colorado State University

Cytospora, in organic orchards!

Do we have any solutions?

- Lime sulfur
- Cutting it out
-?

At WCRC-RM, we're working on it.

1. Defense Priming

Can natural compounds known to elicit plant defense responses *prime* a tree against Cytospora infection?

2. Organic Fungicides

 Through the *IR-4 program*, we are testing organic fungicides that are known to be effective against other fungal pathogens but have yet to be tested on peach for Cytospora canker.

3. Biological Antagonism

• Utilizing native microbes, such as *Trichoderma* spp., to outcompete or act as an inhibitor to *C. plurivora*.

1. Defense Priming

The Plant Immune Response

- Pathogens are sensed by the plant cell
- The genome is called to activate Defense Response genes
 - Hormones signaling across the plant
 - Strengthening of cell walls
 - Peroxides to fight pathogens
 - Localized cell death

Cytospora canker in peach: Fighting the disease using *defense priming*

- Using the natural plant immune response:
 - Elicit with organic substances such as seaweed powder, silicon, plant extracts, etc.
 - Wound spray treatment, then test by branch inoculation (1 week apart?)
 - Measure disease spread, infection occurrence
 - Potential for a new preventative spray measure

Some defense priming compounds reduce infections

Conclusions

- Defense elicitor, Silica, prevented infection, comparable to the industry standard, 3% Lime Sulfur.

- Lime Sulfur at 100% is phytotoxic. The extent of tissue damage is evident with high infection rates

Why Silica?

- Abundant in rice and grasses
- Used as a protecting layer

https://doi.org/10.3389/fpls.2017.00701

The multiple defense priming avenues of Silicon

1. Physical

Cell wall reinforcement

2. Biochemical

• Enzymes, antimicrobial compounds, hormones

3. Molecular

Defense genes turn on

The multiple defense priming avenues of Silicon

1. Physical

Cell wall reinforcement

2. Biochemical

• Enzymes, antimicrobial compounds, hormones

3. Molecular

Defense genes turn on

2. Organic fungicides

"Facilitate Regulatory Approval of Sustainable Pest Management Technology for Specialty Crops and Specialty Uses to Promote Public Wellbeing"

- Established in 1963, due to a lack of financial incentive to expand registration of ag products to specialty crops
- Activities of IR-4
 - Residue, efficacy, proposal submissions to EPA for label expansion, Integrated Solutions projects, assisting with registration of new technologies, facilitating harmonization of global pesticide regulations.

Fungicides and biologicals show promise

Conclusions

Trichoderma isolate T131
(from orchards in Western
CO), shows antagonism
towards Cytospora, and
prevents infection.

- Organic fungicides all showed reduction!

- Lime Sulfur at 100% is *STILL* phytotoxic.

We've Tried

it... (2022)

AND WE'LL TRY IT AGAIN!

With refinement, of course.

March 21st

Peach Pruning and Management!

Thank you

Do you practice integrating livestock in your specialty crop operation?? We need to hear from you! Go to the CSU table and sign up!

People at WCRC-RM

Brad Tonnessen (Me) Scientist at WCRC-Rogers Mesa Brad.Tonnessen@colostate.edu 970-872-3437

Max Kirks Research Associate, Horticulturist

Bryan Braddy Senior Research Associate

Nicole Didero CSU Extension Regional Specialist, Food & Ag