2018 Metamitron: Phyto

MICHIGAN STATE

- Metamitron applied during heat led to relatively high levels of phytotoxicity
- Compound does not translocate in plant

2019 Metamitron: Fruit set MICHIGAN STATE Extension

Effect of Metamitron on thinning (11-14 mm timing)

Effect of Metamitron on thinning (1.5 pt/a rate)

• 2019 rate response more pronounced than 2017 and 2018

•Metamitron thinned quite well across a wide range of fruit developmental stages (petal fall to late, 24 mm)

•Strongest response at 12 mm

2019 Metamitron: Yield

MICHIGAN STATE

2020 Metamitron: FS, Yield MICHIGAN STATE

Extension

- 2020 rate response detectable
- •Metamitron was not efficacious at late timing (24 mm), unlike previous year
- •Strongest response was observed at 12 mm

2021 Metamitron

MICHIGAN STATE

5-yr summary (2017-2021)

- •Early rate response was poor (possibly an issue with formulation)
- •Moderate to high rates (recommended) generally overthinned
- •Efficacy at moderate to low rates for a wide range of developmental stages (6 mm up to 20 mm)
- •Optimum response at 12 mm

Metamitron Trials (60-year-old Bartlett): Year 1

Metamitron Trials (60-year-old Bartlett)

Treatmer	nt	Fruit set	Yie	ld	Fruit weight	Fruit volume	SS	TA	FF
Time	ppm	(no./cluster)	(no./tree)	(kg/tree)	(g)	(cm ³)	(%)	(%)	(lb f)
Control		0.51	1021.5	172.0	189.1	923.0	12.1	0.37	17.7
7.2 mm	150	0.46	919.8	160.5	192.3	1181.2	12.1	0.39	17.3
7.2 mm	300	0.43	752.8*	128.1	186.9	1133.2	12.4	0.37	17.2
7.2 mm	600	0.46	734.4*	138.8	210.34*	1214.8	11.5	0.42	17.4
Significant (li	near)	NS ^z	*	NS	*	NS	NS	NS	NS
Adjusted R-sq	uared	_	0.3		0.2				
10.9 mm	150	0.36*	484.6***	102.4***	233.68***	1323.7	12.0	0.44***	18.2
10.9 mm	300	0.304**	436.2***	98.36***	237.92***	1324.6	11.9	0.44***	18.4
10.9 mm	600	0.202***	330***	75.29***	246.92***	1383.0	12.3	0.46***	18.9*
Significant (li	near)	***	***	***	***	NS	NS	***	*
Adjusted R-sq	uared	0.64	0.8	0.7	0.7			0.79	0.2
7.2+10.9 mm	150	0.34**	490.4***	109.8***	240.8***	1349.5	11.9	0.41	17.8
7.2+10.9 mm	300	0.22***	393.4***	87.66***	250.6***	1380.1	11.8	0.46**	18.3
7.2+10.9 mm	600	0.21***	342.5***	72.24***	236.53***	1323.0	12.1	0.45**	18.6
Significant (li	near)	***	***	***	***	NS	NS	**	NS
Adjusted R-sq	uared	0.73	0.87	0.79	0.20			0.41	

- Early timing had a slight effect at higher rates
- Linear rate response at 11 mm timing

Metamitron Trials (11-year-old Bartlett)

Treatment		Fruit set	Before Hand Thinning	Hand Thinned	Yie	eld	Avg. Fruit wt.
Product	ppm	(fruits/cluster)	(no. fruit/tree)	(no. fruit/tree)	(lbs/tree)	bins/acre	(g)
Control	0	1.06 a	732 a	227 a	202 a	41	189 c
Metamitron	100	0.66 b	703 a	219 a	201 a	41	196 bc
Metamitron	200	0.65 b	550 ab	162 ab	168 ab	34	206 ab
Metamitron	300	0.55 b	387 b	100 b	126 b	26	197 abc
Metamitron	400	0.59 b	424 b	101 b	146 ab	29	214 a
6-BA	100	0.44 b	415 b	115 b	136 b	27	213 ab
Pr>F		0.0002	0.011	0.0007	0.05		0.027

New and Future THINNERS

- ABA
- METAMITRON (aka, Brevis)
- ACC

Slide based on T. Robinson, Cornell

Prediction of Fruit Set is Based on Actual Fruit Growth Data

Greene and Lakso, 2005

 Precision thinning model is based on the principle that fruit whose growth rate is 50% or less than the most rapidly growing fruit will abscise

- Begin 6mm (75 spurs)
- Measure prior to thinning, 3, 6, and potentially 9 days after thinning

Prediction of Fruit Set is Based on Actual Fruit Growth Data

NORMAL THINNING YEAR

COOL THINNING YEAR

Greene and Lakso, 2005

Slowing of fruit growth precedes abscission by 7 to 12 days, depending on environmental factors

FGR Model- Precision Thinning

- We would like to eliminate repeated measures of fruit
- The FGR model is based on relative growth rates
- Our aim was to develop an alternative approach to predict fruit set by assessing fruit size of a sample population (destructively harvested)
- This approach is less time consumptive than the FGR model and may inform fruitlet imaging technology

How would this work...?

MICHIGAN STATE

100 spurs

5 trees

100 spurs

Prediction

Single fruit mass imported to Excel

Individual fruit from spurs

Relationship between fruitlet diameter and fresh weight is predictable

- Relationship provides several options for measurement
- Weighing is likely easier than digital caliper
- Imaging (in the future) is likely easier than weighing

<u>Developing an Alternative Model</u>

MICHIGAN STATE

Alternative Prediction Model- 100 spurs sample every few days

- Two treatments were compared: Control & 6mm thinner
- Prediction of fruit estimated to abscise based on fruit whose size was ≤50% of the largest fruit (top 10%)
- Actual number of fruit that have already abscised (number of fruit from sampled spurs / no. of spurs * 6 [max, possible fruit])

Predictions-Thinned

MICHIGAN STATE

UNIVE

RSITY

Extension

- After two years of data, the proposed model has potential to generate an accurate estimation of fruit set that is markedly more time efficient to implement compared to the FGR model
- Currently the alternative model has similar to improved accuracy in the prediction but lags by ~2-3 days
- Producing an early estimate is critical to any decision support thinning model; a statistical analysis of the data is forthcoming to identify factors that delay the prediction of the proposed size distribution model

Objectives

- Determine if enclosing apple trees in netting at specific percentages of open bloom could reduce pollination, fruit set, and thinning
- A secondary objective was to evaluate the effect of nets on productivity, fruit size, and quality
- <u>Hypothesis</u>: Netting will produce a range of crop loads depending on the percentage of open bloom accessible to pollinators prior to the time of canopy enclosure.

(Photo credi:: S. Musacchi

Nets lowered at predetermined percentages of bloom •

 Despite netting trees as early as Pink (0% open flowers), netting had no effect on 'Gala' fruit set

 Netting reduced seed number and increased the percentage of seedless fruit

Treatment			weight	overcolor			
	(Kg)	(no.)	(g)	(%)	(Kg)	(%)	(l:w)
Non-netted	23.0	181.1	127.2	39	3.83 a ^y	12.1	1.10
Netted 0% (Pink)	20.6	160.3	128.2	41	3.68 ab	12.0	1.09
Netted 25% (KB)	21.5	164.5	130.5	36	3.57 bc	11.9	1.09
Netted 60% (KB)	21.5	159.0	135.5	33	3.51 c	11.8	1.08
Netted 95% (KB)	20.9	162.6	128.4	35	3.76 a	11.8	1.10

Results: Fruit set (2017-2018)

Honeycrisp (WA) 2017: comparison fruit set %

Honeycrisp (WA) 2018: comparison fruit set %

Fruit set and yield under nets similar to hand thinned non-netted control

MICHIGAN STATE | Extension

☆

Results: Seed analysis (2017-2018)

Elsysy, Serra, Schwallier, Musacchi, Einhorn, 2019 Agronomy (submitted)

 \bigstar

2019 Netting Trial: Fuji

MICHIGAN STATE

				A. Mar	
Treatment	Fruit wt.	Misshapen		Seeds	
Fuji	(g)	L:W	Mature	Non-mature	Non-fertilized
No net	199 b	1.15	7.9 a	0.11	1.05 b
Net Pink	214 ab	1.11	5.6 b	0.18	2.07 a
Net 20%	218 a	1.26	5.1 b	0.12	2.53 a
Net 45%	226 a	1.12	8.2 a	0.07	0.61 b
Net 70%	222 a	1.07	7.9 a	0.09	0.67 b

2019 Netting Trial: Sweet Tango

MICHIGAN STATE

Extension

Treatment	Fruit wt.	Misshapen		Seeds	
Sweet Tango	(g)	L:W	Mature	Non-mature	Non-fertilize
No net	160 b	1.04	5.3 a	0.33 a	3.7 b
Net Pink	197 a	1.03	3.8 b	0.08 b	5.5 a
Net 40%	210 a	1.03	4.1 ab	0.05 b	5.2 a
Net 75%	164 b	1.05	4.4 ab	0.07 b	4.8 ab

2020 Fuji and Honeycrisp

MICHIGAN STATE

VFRSI

Extension

- Similar response to 2019
- Honeycrisp would require greater percent of open bloom, as similarly observed in WA trials
- Fuji seems to have no problems setting netted flowers
- WAA benefiting from exclusion of natural predators

- All branches set to 4 spurs per lcsa with equilidisc
- Gala fruit set quite high for all netted treatments (marked variation among timings)
- All clusters pinched to a single fruitlet 1 month after bloom

2021 Honeycrisp

Extension

CHIGAN STATE

VFRS

- All branches set to 4 spurs per lcsa with equilidisc
- Honeycrisp fruit set severely limited by frost- previous data indicates that ~80% KB is ideal timing for Honeycrisp
- All clusters pinched to single fruitlet 1 month after bloom

Thank you for your attention MICHIGAN STATE | Extension

- Thanks to the Michigan Apple
 Committee, MSU AgBioResearch
 (ProjectGreeen), MSU Extension, USDA SCRI for project support and funding
- Phil Schwallier (collaboration), Gail 'Peach' Byler and Denise Ruwersma, and Dan Platte and CRC farm crew for technical support
- Dr. Tom Sharkey, Dr. Mokhles 'CC' Elsysy, Laura Hillmann (Ph.D. candidate), Chayce Griffith (MS candidate), Austin Chase, Wesley Banning

Precision Grop Load Management of Apples: USDA-NIFA-SCRI SREP 2020-51181-32197. 09/30/2019 – 08/31/2023.

Freeze Injury

 Rescue remedies for ovular and/or ovarian tissue injury?

<u>GA + BA (Promalin)</u>

 Combinations of Cytokinins & GAs may have a synergistic effect on fruit set

MICHIGAN STATE

 Over several regions and years, 3 of 5 trials resulted in greater yield from GA+6-BA applications

Table 1. Effects of gibberellin $A_4 + A_7$ and 6-benzyladenine (GA₄₊₇ plus 6-BA) treatments after freezes during full bloom on 12 and 13 Apr. 2012 on fruit set, total yield, fruit number per tree, and mean fruit weight of 'Taylor Spur Rome'/'M.7' apple in Henderson County, NC.

	Fruit set	Yi	eld	Fruit	Mean fruit	Crop value
Treatment ^z	(fruit/100 clusters)	(kg/tree) ^z	(bu/acre) ^z	(no./tree)	wt $(g)^{z}$	(\$/acre) ^y
Untreated control	2.6 a ^x	11.7 a	94 a	58 a	198	1965
GA ₄₊₇ plus 6-BA (25 mg·L ⁻¹)	17.7 b	36.8 b	296 b	195 b	185	5807
$\begin{array}{c} \text{GA}_{4+7} \text{ plus } 6\text{-BA} \\ (50 \text{ mg} \cdot \text{L}^{-1}) \end{array}$	14.9 b	33.9 b	273 b	185 b	182	5328
Significance ^w	* *	* * *	* * *	* * *	NS	* * *

^z1 mg·L⁻¹ = 1 ppm, 1 kg = 2.2046 lb, 1 42-lb (19.1 kg) bushel (bu) per acre = 47.0757 kg·ha⁻¹, 1 g = 0.0353 oz.

McArtney et al., 2014

Extension

MICHIGAN STATE

Do frost rescue PGRs need to be applied w/in 24 hours of an event?

Frost in 2014

Date	Frost				
	Start	Finish	Duration	Low Temp	
15-Apr	20:54	8:34	9.5 hr	26.6	
17-Apr	4:24	8:04	3.5 hr	27.5	

Staton Brookfield Gala/M.7 (2014)				
Flag Color	Treatment	Fruit set (%)		
White	Control	11.7 a		
Orange	Promalin on April 16	20.2 bc		
halloween	Promalin on April 17	21.9 bc		
blue	Promalin on April 18	16.1 ab		
Pink	Promalin on April 20	18.9 bc		
Yellow	Promalin on April 21	24.1 c		

Data compliments of Dr. Steve McArtney

MICHIGAN STATE Extension

Early-season auxin and ABA sprays significantly reduce bitter pit in 'Honeycrisp'

and seeds counted

error of the means

ARAS ARASH LIANS BART BARTS OUT

ARE

Whole-tree auxin and

MICHIGAN

APPLES

error of the means.

GREEEN

Objective: Evaluate AVG for 'Hard-To-Set' Cultivars

Objective: Evaluate AVG for 'Hard-To-Set' Cultivars

Einhorn, unpublished

Treatment	Seed no. per fruit			
	'd'Anjou'	'Comice'		
Control	4.9	5.4		
ReTain 40 ppm	4.1	5.6		
ReTain 80 ppm	4.0	5.8		

 AVG persisted for ~10 days after apps

days from full bloom

days from full bloom

- All treatment timings improved fruit set
- 16 dafb app likely improved fruit set for the small percentage of delayed blooms (compared to the mean)

	Harvest				
Treatment	Yield (lbs/tree)	Fruit wt. & seed no.			
Control	347 c	207 (4.6)			
ReTain 8 dafb	421 a	211 (5)			
ReTain 12 dafb	390 ab	208 (4.6)			
ReTain 16 dafb	434 a	213 4.9)			

• All treatment timings increased yield

• No effect on fruit size or seed no.

Pruning to bud load + thinning

Precision Crop load? HONEYCRISP

Precision Crop load? HONEYCRISP

UNI

MICHIGAN STATE

RSIT

Y

Extension

Chemical Thinning: 1) Lime sulfur (at ~80% bloom), 2) NAA/Sevin (at petal fall), and 3) Maxcel/Sevin (at 10-12 mm) if necessary.