

Growth Potential

The fruit physiologist, Ted DeJong (UC-Davis) described Potential fruit growth as analogous to compound interest, where...

- Fruit growth (e.g., financial growth) depends on,

1) fruit size (e.g., principal) at the start of any time interval, and
2) the rate of growth (e.g., interest) during a given time interval

- Thus, a small fruit at the beginning of a time interval \&/or a rate of growth less than maximum during the interval will result in growth below the maximum potential, and
- Fruit that grow below their maximum potential cannot make up 'lost' growth during the next time interval... even if growth rate (e.g., interest rate) is maximum during the next timeframe

Sweet Cherry Growth Phases

- Cell division stage:
- Stage I:
- Stage II: Growth potential set (-14 to 30 DFB)
Pit hardening
- Stage III:

Growth potential realized? (44 DFB to harvest)

Fruit Growth Patterns

I. Cell division
II. Pit hardening (embryo growth)
III. Cell expansion

Cherry Growth \& Development

Cell division in fruit is difficult to manipulate in managed systems Cell division ceases ~14 days after bloom

The Situation for CHERRY

Table 3. populations of large and small fruit from 'Bing', 'Regina', and 'Selah' sweet cherries at harvest maturity.

	Bing				Regina				Selah			
	2004		2005		2004		2005		2005		2006	
	High wt	Low wt										
Fruit												
Wt (g) ${ }^{\text {r }}$	$9.4{ }^{\text {* }{ }^{\text {* }} \text { * }}$	$7.6^{* * *}$	$11.3^{* * *}$	$7.5^{* * *}$	$10.3^{\text {*** }}$	7.7***	$12.4{ }^{\text {*** }}$	8.3 ***	13.7 ***	8.8 ***	$16.4{ }^{\text {**** }}$	$7.8{ }^{\text {*** }}$
Diameter (mm)	$26.7{ }^{\text {+ }}$	$24.8{ }^{\text {*** }}$	27.6***	$24.0{ }^{\text {+ }}$ **	$27.7^{\text {*** }}$	$25.1{ }^{\text {+*** }}$	$28.8{ }^{\text {*** }}$	24.3***	30.0 ***	$25.0{ }^{\text {*** }}$	$32.1{ }^{\text {*** }}$	24.8***
Pit												
Wt (g)	$0.57^{* *}$	0.50 **	0.56 *	0.48*	0.64 ns	0.58 Ns	$0.64{ }^{\text {* }}$	$0.48{ }^{\text {* }}$	0.55 ns	0.49 Ns	-	-
Diameter (mm)	7.9**	$7.4{ }^{\text {*** }}$	7.6 Ns	7.3 Ns	8.3 Ns	8.0 Ns	8.2 ${ }^{\text { }}$	7.5*	8.1 ***	7.2 ***	-	-
Mesocarp												
Cells (no.)	48.5 Ns	48.3 Ns	49.0 Ns	48.0 Ns	45.6 Ns	43.8 Ns	46.8 Ns	47.0 Ns	78.8 Ns	78.2 Ns	76.8 NS	74.2 Ns
Length ($\mu \mathrm{m}$)	$196{ }^{\circ}$	181*	$208{ }^{*}$	185*	214^{*}	$195{ }^{\text {* }}$	219**	176*	137 Ns	125 Ns	146*	111*

Mean separation for pared treatments in rows by Fisher s isD.
w,**,*) Nonsignificant and significant at $P<0.05,0.01$, and 0.001 respectively.
Olmstead et al., 2007

Sweet cherry fruit size at harvest is dependent on cell size

HOWEVER, cultivars with maximum potential fruit size have MORE cells than those with lower growth potential (not necessarily growth rate)

The Growth Rate of Cherry Ovaries Before Bloom Is Rapid

March 20

April 03

April 06
April 14

April 20

May 11

Relationships Among Sweet Cherry Reproductive Buds, Flowers and Ovaries (i.e., Future Fruit)

-7 days from bloom

- The data suggest that LARGER buds have relatively LARGER flowers and ovaries than smaller buds
- Cultural Implications: Bud Removal (fruit thinning)

Potential Fruit Size of Cherry Is Established Early

- Large buds produced the largest fruit
- Bud size was also related to time of flowering
- Large buds began flowering -3 DFB
- Small buds began flowering +1 DFB

Slide compliments of M. Whiting, WSU

Early-Opening Flowers Represent the Largest

 Fruit at Harvest| Flower Timing | Fruit diameter mm | Row size | $\begin{gathered} \text { Sugars } \\ \% \end{gathered}$ | Firmness
 g / mm | Skin color CTIFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Day 1 | 28.5 a | 9.5 | 20.3 a | 291 b | 4.4 a |
| Day 4 | 27.1 ab | 10 | 18.5 ab | 311 a | 3.8 b |
| Day 7 | 25.9 b | 10.5 | 17.2 b | 325 a | 3.5 b |

* Flower timing $=$ first blooms to open on trees were tagged $(=$ day 1) and compared to flowers that opened 3 days later (d 4) or 6 days later (d 7).
- The time of flowering has a large impact on fruit size because
- The development and growth of 'early' flowers tends to be higher than later blooming flowers
- One-time harvest events do not allow fruits from late-blooming flowers to 'catch-up'
Cultural Implications: Protect early phenology stages from frost; Remove bees earlier than later if weather was good for fruit set

Can Pre-Bloom Ovary Growth Be Manipulated?

- Ideally, a PGR that stimulates cell division would be timed with the occurrence of this process,
- Challenges with penetration at early bud stages given the lack of absorptive surface area

Match Growth Process with Compound

PGR	CLASS	TIMING	RATE
CPPU FineAmericas	Cytokinin	First White	20 ppm
CPPU FineAmericas	Cytokinin	~7 dafb	20 ppm
6-BA/GA ${ }_{4+7}$	Cytokinin Gibberellin	First White	250 ppm
6-BA/GA ${ }_{4+7}$	Cytokinin Gibberellin	~7 dafb	250 ppm
6-BA/GA ${ }_{3}$	Cytokinin Gibberellin	First White	$1 \mathrm{gal} / 100 \mathrm{gal}$
6-BA/GA ${ }_{3}$	Cytokinin	~ 7 dafb	$1 \mathrm{gal} / 100 \mathrm{gal}$

Timing application \& a.i. with

growth process

 finterest

Bing Fruit Distribution at Harvest

Increase in mean fruit size was $\sim 1 / 2$ row size
Data are means of $\sim 4,000$ fruits per treatment Returns: CPPU \$1.01/lb; GA/BA \$0.99/lb; Control \$0.86/lb

Seasonal Cherry Growth \& Development

Gibeaut and Einhorn, unpublished

- Cells grow the entire season- not just in the 'cell expansion' phase
- However, $60-75 \%$ of growth occurs after pit hardening
- PGRs that capitalize on cell expansion processes are widely utilized in sweet cherry production

Variation in Sweet Cherry Mesocarp Cells

GA_{3} : Pre-harvest application timing

GA Rates	2010 Sweetheart	2010 Skeena	2010 Staccato	2011 Skeena	2012 Sweetheart	2012 Lapins
0	380 a	371 c	320 b	316 b	298 b	261 b
0+ surfact.				336 b	305 b	250 b
10				370 a		
20	417 a	405 b	459 a	373 a		
25					331 a	297 a
30	416 a	414 ab	448 a	377 a		
$30(20+10)$	418 a					
40	419 a	443 a	474 a	390 a		
$40(20+20)$	414 a	441 a		383 a		
40 (30+10)		435 ab				
50					345 a	281 a
60	417 a	447 a	440 a	394 a		
$60(20+40)$	417 a	427 ab		373 a		
100					352 a	262 b

Data from Einhorn et al., 2013

- Firmness was the most consistently affected attribute
- Response saturated at low concentrations (10 to 25 ppm)
- A fruit size effect from GA was only observed in one year
- Response was not influenced by cultivar

GA Effects on Cherry Skin Color

- GA delays color
-inconsistent rate response
- Delay in color allows fruit more time on tree potentially resulting in greater size (this is NOT a direct growth effect) and higher SSC

$\mathrm{GA}_{3}:$ Pre-harvest application timing

Main effects	Yield (kg/tree)	Average fruit weight (g)	Rain cracking (\%)	Fruit firmness (g / mm)	Total soluble solids (\%)	pH	Titratable acidity (\% malic acid)
GA Treatment							
Control	8.0	9.7	17.8	273	20.9	3.92	1.0
T1	8.5	10.9	30.2	324	21.8	3.74	1.17
T2	8.0	10.6	23.1	318	21.6	3.81	1.16
T3	10.0	10.7	23.0	314	22.6	3.80	1.21
T4	8.6	10.4	19.6	295	22.0	3.79	1.18
Significance	0.8063	<0.0001	0.1189	<0.0001	0.0567	0.0010	<0.0001

T1 = 10-14 d prior to straw; T2=4-7 d prior to straw; T3= straw; T4=7d after straw Kappel and MacDonald, 2007

- Fairly wide window for timing ($\pm 10 \mathrm{~d}$ from straw)
- Early 'green' fruit applications are efficacious
- Increased risk of cracking when applications are made near rain events- weather forecasting to time sprays
$-\mathrm{GA}_{3}$ may be more efficacious than GA_{4+7}

GA to Manage Sweet Cherry Crop

Effects of GA_{3} application on return bloom of 'Bing' sweet cherry (modified from Proebsting and Mills, 1974).

Application date ${ }^{\text {z }}$	Flower buds per 25 cm on 2-year-old wood
$5 / 10$	76
$5 / 30$	68
$6 / 21$	95
$7 / 11$	100
$8 / 1$	110
$8 / 22$	107
Untreated	116

${ }^{2}$ Single application, 100 mg active ingredient/liter water.
‘Skeena’, data from Einhorn et al., 2013
Return Bloom

Treatment ${ }^{2}$				Return Bloom	
	Avg fruit wt	Avg fruit diam	$\overline{\mathrm{FF}}$	buds/spur	flowers/bud
GA (ppm)	(g)	(mm)	$\left(\mathrm{g} \cdot \mathrm{~mm}^{-1}\right)$	(no.)	(no.)
0	12.2	30.7	$231 \mathrm{~b}^{\text {x }}$	3.5	2.9 a
25	12.1	30.7	268 a	3.7	2.8 ab
50	11.4	30.0	278 a	3.4	2.3 b
100	11	29.6	267 a	2.5	1.1 c

GA: Crop Regulation of Cherry

- For cultivars prone to developing/inducing too many flower buds on current-season wood
- Cherry buds are simple (either flower or vegetative)
- The year following fruiting, nodes which had flower buds on 1-year-old wood become blind
- GA is applied to inhibit floral buds from developing - for productive cvs this increases spur production and future yields
- GA concentration depends on species and age (sour cherry, 25 to 50 ppm single app to young trees [3-year-old]; 10 to 20 ppm older trees + 0.1% NIS; Sweet cherry cultivars ~ 100 ppm)
- Timing is 5 to 7 leaves on extension shoots or 3 to 4 weeks after bloom

GA Can Mitigate Pitting Incidence

Fig. 1. Effect of preharvest gibberellic acid $\left(\mathrm{GA}_{3}\right)$ treatments on induced pitting severity and natural pitting incidence of 'Lapins' (A, C) and 'Sweetheart' (B, D) cherries after 2 weeks of storage at $0{ }^{\circ} \mathrm{C}$. Vertical bars represent sD. Means were separated between treatments by Fisher's protected least significant difference test (LSD) ($P<0.05$), whereby means associated with different letters are significantly different.

Factors That Affect Cell Expansion \& Growth

- Light - limited supply leads to reduced CHO- increasing shade with increasing canopy thickness
- Temperature- what are the optima temperatures for the growth and development of sweet cherry, leaf photosynthesis, and respiration of fruit and vegetative organs?
- Crop load- Imbalanced crop loads decrease fruit size
- Nutrient availability- dependent on supply, source, microbial activity, irrigation, soil conditions/temp, rootstock, fertilizer (rate, supply, forms, etc.)
Water - water stress reduces growth. The amount of stress that organs can withstand prior to reduced growth is necessary information to schedule the volume and frequency of irrigations

Key Factors that influence Water Use and Tools/Information Needed to Manage

- Solar radiation/Light: Energy source

Weather station/ET Models

- Humidity: VPD is the gradient that drives Transpiration

Weather station/ET Models

- Wind: aerodynamic component that serves to disperse boundary layers and increase VPD

Weather station/ET Models

- Canopy leaf area: directly proportional to water use

Tree architecture/training system, vigor control

- Crop load: Perhaps only to a limited degree in sweet cherry (unlike pome fruits)

Thinning/Crop load management, pruning...

- Drought/soil moisture reserves

Soil moisture monitoring, soil texture analysis/soil maps, excavation and observation of rooting depth, etc.

Regulated Deficit Irrigation (RDI)

- Providing irrigation below plant demand at specific time intervals throughout the season based on different patterns of growth and/or,
- Differential sensitivity of tissues, organs and growth processes to water stress

Stem Water Potential (MPa)

When to apply RDI to sweet cherry tree

- Stage 1: If soil moisture profile is full, then withholding or reducing irrigation to allow utilization of deeper soil moisture reserves can save water. This requires knowledge of the rooting profile (i.e., depth) and soil moisture. Reducing irrigation during early-season is unlikely to create soil moisture deficits that affect fruit growth by cell division.

When to apply RDI to sweet cherry tree

- Stage 1: If soil moisture profile is full, then withholding or reducing irrigation to allow utilization of deeper soil moisture reserves can save water. This requires knowledge of the rooting profile (i.e., depth) and soil moisture.
Reducing irrigation during early-season is unlikely to create soil moisture deficits that affect fruit growth by cell division.
- Stage 2: Ideal, but duration of pit-hardening may be insufficiently long to achieve large savings
- Stage 3: Ideally, frequent irrigations at full ETc (kc values ~1) throughout Phase III, possibly reduced $\sim 10-14$ days prior to harvest

Leaf Area \& Function- Sweet Cherry

Figure 2. Year 1-new shoot growth with single leaves at each node.

Figure 3. Year 2-first season growth forms non-fruiting spurs, with greater spur density in the terminal portion and a few basal non-spur frult buds.

Figure 4. Year 3-first season growth forms fruiting spurs, with more flower buds per spur (and greater spur density) in the terminal portion.

- Leaf populations photosynthesize at the same rate irrespective of their origin (i.e., current, 1-yr-old, 2+ yr-old
- ~200 cm² of LA per fruit is required to attain commercial fruit size (i.e., 4-5 leaves/fruit)
- Increase leaf area with late fall foliar urea or early spring (green tip) GA or GA/BA to increase CHO

Sweet Cherry Leaf Area and Location Effects

- Large healthy leaves, in close proximity of fruit, are critical for fruit to achieve maximum size and quality

When to apply RDI to sweet cherry trees

 PH: Possibly 50% ET but caution required for applying extreme stress during floral bud

Physiological fruit disorders related to water stress

Twinning, doubles and deep suture of peach, pliunn and and siweet cherry due to incomplete or retarded floral bud differentiation and carpel development

