Characterization and Mitigation of the Factors Limiting Sweet Cherry Fruit Quality and Productivity

Todd Einhorn, Ph.D. Michigan State University WCHS Annual Conference, 2022

Valley of Abundance SAN JOAQUIN VALLEY change.net

<u>Growth Potential</u>

- The fruit physiologist, Ted DeJong (UC-Davis) described
 Potential fruit growth as analogous to compound interest, where...
- Fruit growth (e.g., financial growth) depends on,

1) fruit size (e.g., principal) at the start of any time interval, and

2) the rate of growth (e.g., interest) during a given time interval

- Thus, a small fruit at the beginning of a time interval &/or a rate of growth less than maximum during the interval will result in growth *below* the maximum potential, *and*
- Fruit that grow below their maximum potential cannot make up 'lost' growth during the next time interval... even if growth rate (e.g., interest rate) is maximum during the next timeframe

Sweet Cherry Growth Phases

- Cell division stage:
- Rapid increase 14 d pre-bloom to about 20 DAB
 - Stage I :
- Stage II:
- Stage III:
 - Growth potential realized? (44 DFB to harvest)

Pit hardening

Growth potential set (-14 to 30 DFB)

Fruit Growth Patterns

Fruit size

- I. Cell division
- II. Pit hardening (embryo growth)
- III. Cell expansion

Cherry Growth & Development

- Cell division in fruit is difficult to manipulate in managed systems
- Cell division ceases ~14 days after bloom

The Situation for CHERRY

Table 3. Comparison of mean whole tresh truit size, pit size, and mesocarp cell number (per radial section), and size measurements for populations of large and small fruit from 'Bing', 'Regina', and 'Selah' sweet cherries at harvest maturity.

	Bi	ing			Reg	gina		Selah		ah	h	
20	04	20	005	20	104	20	005	20	05	20	006	
High wt	Low wt	High wt	Low wt	High wt	Low wt	High wt	Low wt	High wt	Low wt	High wt	Low wt	
9.4***	7.6***	11.3***	7.5***	10.3***	7.7***	12.4***	8.3***	13.7***	8.8***	16.4***	7.8***	
26.7***	24.8***	27.6***	24.0***	27.7***	25.1***	28.8***	24.3***	30.0***	25.0***	32.1***	24.8***	
0.57**	0.50**	0.56*	0.48*	0.64 NS	0.58 NS	0.64**	0.48^{**}	0.55 NS	0.49 NS	-		
7.9**	7.4**	7.6 NS	7.3 NS	8.3 NS	8.0 NS	8.2*	7.5*	8.1***	7.2***			
48.5 NS	48.3 NS	49.0 NS	48.0 NS	45.6 NS	43.8 NS	46.8 NS	47.0 NS	78.8 NS	78.2 NS	76.8 NS	74.2 NS	
196*	181*	208*	185*	214*	195*	219*	176*	137 NS	125 NS	146*	111*	
	20 High wt 9,4*** 26.7*** 0.57** 7.9** 48.5 NS 196*	Bi 2004 High wt Low wt 9.4*** 7.6*** 26.7*** 24.8*** 0.57** 0.50** 7.9** 7.4** 48.5 NS 48.3 NS 196* 181*	Bing 2004 20 High wt Low wt High wt 9.4*** 7.6*** 11.3*** 26.7*** 24.8*** 27.6*** 0.57** 0.50** 0.56* 7.9** 7.4** 7.6 NS 48.5 NS 48.3 NS 49.0 NS 196* 181* 208*	Bing 2004 2005 High wt Low wt High wt Low wt 9.4*** 7.6*** 11.3*** 7.5*** 26.7*** 24.8*** 27.6*** 24.0*** 0.57** 0.50** 0.56* 0.48* 7.9** 7.4** 7.6 NS 7.3 NS 48.5 NS 48.3 NS 49.0 NS 48.0 NS 196* 181* 208* 185*	Bing 2004 2005 20 High wt Low wt High wt Low wt High wt 9.4*** 7.6*** 11.3*** 7.5*** 10.3*** 26.7*** 24.8*** 27.6*** 24.0*** 27.7*** 0.57** 0.50** 0.56* 0.48* 0.64 Ns 7.9** 7.4** 7.6 Ns 7.3 Ns 8.3 Ns 48.5 Ns 48.3 Ns 49.0 Ns 48.0 Ns 45.6 Ns 196* 181* 208* 185* 214*	Bing Reg 2004 2005 High wt Low wt 9.4*** 7.6*** 11.3*** 7.5*** 10.3*** 7.7*** 26.7*** 24.8*** 27.6*** 24.0*** 0.57** 0.50** 0.57** 0.50** 0.57** 0.64 Ns 0.57** 7.4** 7.6 NS 7.3 NS 8.3 NS 8.0 NS 48.5 NS 48.3 NS 49.0 NS 48.0 NS 45.6 NS 43.8 NS 196* 181* 208*	Bing Regina 2004 2005 2004 20 High wt Low wt High wt Low wt 10.3^{***} 20.4^{***} 9.4^{***} 7.6^{***} 11.3^{***} 7.5^{***} 10.3^{***} 7.7^{***} 12.4^{***} 26.7^{***} 24.8^{***} 27.6^{***} 24.0^{***} 27.7^{***} 25.1^{***} 28.8^{***} 0.57^{**} 0.50^{**} 0.56^{*} 0.48^{*} 0.64 Ns 0.58 Ns 0.64^{***} 7.9^{**} 7.4^{**} 7.6 Ns 7.3 Ns 8.3 Ns 8.0 Ns 8.2^{*} 48.5 Ns 48.3 Ns 49.0 Ns 48.0 Ns 45.6 Ns 43.8 Ns 46.8 Ns 196^{*} 181^{*} 208^{*} 185^{*} 214^{*} 195^{*} 219^{*}	Bing Regina 2004 2005 100 model 2005 High wt Low wt High wt Low wt 100 model 100 model 9.4*** 7.6*** 11.3*** 7.5*** 10.3*** 7.7*** 12.4*** 8.3*** 26.7*** 24.8*** 27.6*** 24.0*** 27.7*** 25.1*** 28.8*** 24.3*** 0.57** 0.50** 0.56* 0.48* 0.64 Ns 0.58 Ns 0.64** 0.48** 7.9** 7.4** 7.6 Ns 7.3 Ns 8.3 Ns 8.0 Ns 8.2* 7.5* 48.5 Ns 48.3 Ns 49.0 Ns 48.0 Ns 45.6 Ns 43.8 Ns 46.8 Ns 47.0 Ns 196* 181* 208* 185* 214* 195* 219* 176*	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bing Regina Set 2004 2005 100 wit 2004 2005 100 wit 2005 100 wit 10	Bing Regina Selah 2004 2005 2005 2005 2005 2005 2005 2005 1100 wt	

"Mean separation for paired treatments in rows by Fisher's LSD.

^{so,*,**,***}Nonsignificant and significant at P < 0.05, 0.01, and 0.001 respectively.

Olmstead et al., 2007

- Sweet cherry fruit size at harvest is dependent on cell size
- HOWEVER, cultivars with maximum potential fruit size have MORE cells than those with lower growth potential (not necessarily growth rate)

The Growth Rate of Cherry Ovaries Before Bloom Is Rapid

March 20

April 03 April 06

April 14

April 20 A

April 26

May 01

May 08

May 11

Relationships Among Sweet Cherry Reproductive Buds, Flowers and Ovaries (i.e., Future Fruit)

- The data suggest that LARGER buds have relatively LARGER flowers and ovaries than smaller buds
- Cultural Implications: Bud Removal (fruit thinning)

Potential Fruit Size of Cherry Is Established Early

- Large buds produced the largest fruit
- Bud size was also related to time of flowering
 - Large buds began flowering -3 DFB
 - Small buds began flowering +1 DFB

Slide compliments of M. Whiting, WSU

Early-Opening Flowers Represent the Largest Fruit at Harvest

Flower Timing	Fruit diameter mm	Row size	Sugars %	Firmness g/mm	Skin color CTIFL
Day 1	28.5 a	9.5	20.3 a	291 b	4.4 a
Day 4	27.1 ab	10	18.5 ab	311 a	3.8 b
Day 7	25.9 b	10.5	17.2 b	325 a	3.5 b

* Flower timing= first blooms to open on trees were tagged (= day 1) and compared to flowers that opened 3 days later (d 4) or 6 days later (d 7).

- The time of flowering has a large impact on fruit size because
 - The development and growth of 'early' flowers tends to be higher than later blooming flowers
 - One-time harvest events do not allow fruits from late-blooming flowers to 'catch-up'
- Cultural Implications: Protect early phenology stages from frost; Remove bees earlier than later if weather was good for fruit set

Can Pre-Bloom Ovary Growth Be Manipulated?

- Ideally, a PGR that stimulates cell division would be timed with the occurrence of this process,
- Challenges with penetration at early bud stages given the lack of absorptive surface area

PGR Objectives:

Match Growth Process with Compound

PGR	CLASS	TIMING	RATE
CPPU FineAmericas	Cytokinin	First White	20 ppm
CPPU FineAmericas	Cytokinin	~7 dafb	20 ppm
6-BA/GA ₄₊₇	Cytokinin Gibberellin	First White	250 ppm
6-BA/GA ₄₊₇	Cytokinin Gibberellin	~7 dafb	250 ppm
6-BA/GA ₃	Cytokinin Gibberellin	First White	1 gal/100 gal
6-BA/GA ₃	Cytokinin Gibborollin	~7 dafb	1 gal/100 gal

Timing application a.i. with growth proc of interest

44 -

Bing Fruit Distribution at Harvest

- Increase in mean fruit size was ~½ row size
- Data are means of ~4,000 fruits per treatment
- Returns: CPPU \$1.01/lb; GA/BA \$0.99/lb; Control \$0.86/lb

Seasonal Cherry Growth & Development

- Cells grow the entire season- not just in the 'cell expansion' phase
- However, 60-75% of growth occurs after pit hardening
- PGRs that capitalize on cell expansion processes are widely utilized in sweet cherry production

Variation in Sweet Cherry Mesocarp Cells Radial diameter (µm) Distance from epidermis (µm)

GA₃: Pre-harvest application timing

	2010	2010	2010	2011	2012	2012
GA Rates	Sweetheart	Skeena	Staccato	Skeena	Sweetheart	Lapins
0	380 a	371 c	320 b	316 b	298 b	261 b
0+ surfact.				336 b	305 b	250 b
10				370 a		
20	417 a	405 b	459 a	373 a		
25					331 a	297 a
30	416 a	414 ab	448 a	377 a		
30 (20+10)	418 a					
40	419 a	443 a	474 a	390 a		
40 (20+20)	414 a	441 a		383 a		
40 (30+10)		435 ab				
50					345 a	281 a
60	417 a	447 a	440 a	394 a		
60 (20+40)	417 a	427 ab		373 a		
100					352 a	262 b

Data from Einhorn et al., 2013

- Firmness was the most consistently affected attribute
- Response saturated at low concentrations (10 to 25 ppm)
- A fruit size effect from GA was only observed in one year
- Response was not influenced by cultivar

GA Effects on Cherry Skin Color

• GA delays color

— inconsistent rate response

 Delay in color allows fruit more time on tree potentially resulting in greater size (this is NOT a direct growth effect) and higher SSC

GA₃: Pre-harvest application timing

	15		1.1
ł.	. ,	1.1	
1	6	10	
-		2	

Main effects	Yield (kg/tree)	Average fruit weight (g)	Rain cracking (%)	Fruit firmness (g/mm)	Total soluble solids (%)	рН	Titratable acidity (% malic acid)
GA Treatment							
Control	8.0	9.7	17.8	273	20.9	3.92	1.0
T1	8.5	10.9	30.2	324	21.8	3.74	1.17
T2	8.0	10.6	23.1	318	21.6	3.81	1.16
T3	10.0	10.7	23.0	314	22.6	3.80	1.21
T4	8.6	10.4	19.6	295	22.0	3.79	1.18
Significance	0.8063	< 0.0001	0.1189	<0.0001	0.0567	0.0010	<0.0001

T1= 10-14 d prior to straw; T2= 4-7 d prior to straw; T3= straw; T4= 7 d after straw Kappel and MacDonald, 2007

- Fairly wide window for timing (± 10d from straw)
- Early 'green' fruit applications are efficacious
- Increased risk of cracking when applications are made near rain events- weather forecasting to time sprays
- GA₃ may be more efficacious than GA₄₊₇

GA to Manage Sweet Cherry Crop

Effects of GA₃ application on return bloom of 'Bing' sweet cherry (modified from Proebsting and Mills, 1974).

Application date ^z	Flower buds per 25 cn on 2-year-old wood		
5/10	76		
5/30	68		
6/21	95		
7/11	100		
8/1	110		
8/22	107		
Untreated	116		

² Single application, 100 mg active ingredient/liter water.

'Skeena', data from Einhorn et al., 2013

_Post-hary	est		Return Bloom		
Treatment	Avg fruit wt.	Avg fruit diam.	FF	buds/spur	flowers/bud
GA (ppm)	(g)	(mm)	$(g \cdot mm^{-1})$	(no.)	(no.)
0	12.2	30.7	231 b ^x	3.5	2.9 a
25	12.1	30.7	268 a	3.7	2.8 ab
50	11.4	30.0	278 a	3.4	2.3 b
100	11	29.6	267 a	2.5	1.1 c

Elfving and Visser, 2005

GA: Crop Regulation of Cherry

- For cultivars prone to developing/inducing too many flower buds on current-season wood
- Cherry buds are simple (either flower or vegetative)
- The year following fruiting, nodes which had flower buds on 1-year-old wood become blind
- GA is applied to *inhibit* floral buds from developing – for productive cvs this increases spur production and future yields
- GA concentration depends on species and age (sour cherry, 25 to 50 ppm single app to young trees [3-year-old]; 10 to 20 ppm older trees + 0.1% NIS; Sweet cherry cultivars ~ 100 ppm)
- Timing is 5 to 7 leaves on extension shoots or 3 to 4 weeks after bloom

GA Can Mitigate Pitting Incidence

Fig. 1. Effect of preharvest gibberellic acid (GA₃) treatments on induced pitting severity and natural pitting incidence of 'Lapins' (A, C) and 'Sweetheart' (B, D) cherries after 2 weeks of storage at 0 °C. Vertical bars represent sp. Means were separated between treatments by Fisher's protected least significant difference test (LSD) (P < 0.05), whereby means associated with different letters are significantly different.</p>

HORTSCIENCE VOL. 48(8) AUGUST 2013

Factors That Affect Cell Expansion & Growth

- Light limited supply leads to reduced CHO- increasing shade with increasing canopy thickness
- Temperature- what are the optima temperatures for the growth and development of sweet cherry, leaf photosynthesis, and respiration of fruit and vegetative organs?
- Crop load- Imbalanced crop loads decrease fruit size
- Nutrient availability- dependent on supply, source, microbial activity, irrigation, soil conditions/temp, rootstock, fertilizer (rate, supply, forms, etc.)
- Water water stress reduces growth. The amount of stress that organs can withstand prior to reduced growth is necessary information to schedule the volume and frequency of irrigations

Key Factors that influence Water Use and Tools/Information Needed to Manage

- Solar radiation/Light: Energy source Weather station/ET Models
- Humidity: VPD is the gradient that drives Transpiration Weather station/ET Models
- Wind: aerodynamic component that serves to disperse boundary layers and increase VPD

Weather station/ET Models

- Canopy leaf area: directly proportional to water use Tree architecture/training system, vigor control
- Crop load: Perhaps only to a limited degree in sweet cherry (unlike pome fruits)

Thinning/Crop load management, pruning...

Drought/soil moisture reserves

Soil moisture monitoring, soil texture analysis/soil maps, excavation and observation of rooting depth, etc.

Regulated Deficit Irrigation (RDI)

- Providing irrigation below plant demand at specific time intervals throughout the season based on different patterns of growth *and/or*,
- Differential sensitivity of tissues, organs and growth processes to water stress

When to apply RDI to sweet cherry trees

 Stage 1: If soil moisture profile is full, then withholding or reducing irrigation to allow utilization of deeper soil moisture reserves can save water. This requires knowledge of the rooting profile (i.e., depth) and soil moisture. Reducing irrigation during early-season is unlikely to create soil moisture deficits that affect fruit growth by cell division.

When to apply RDI to sweet cherry trees

- Stage 1: If soil moisture profile is full, then withholding or reducing irrigation to allow utilization of deeper soil moisture reserves can save water. This requires knowledge of the rooting profile (i.e., depth) and soil moisture. Reducing irrigation during early-season is unlikely to create soil moisture deficits that affect fruit growth by cell division.
- <u>Stage 2</u>: Ideal, but duration of pit-hardening may be insufficiently long to achieve large savings
- <u>Stage 3</u>: Ideally, frequent irrigations at full ETc (kc values ~1) throughout Phase III, possibly reduced ~10-14 days prior to harvest

Leaf Area & Function- Sweet Cherry MICHIGAN ST

Figure 2. Year 1—new shoot growth with single leaves at each node.

Figure 3. Year 2—first season growth forms non-fruiting spurs, with greater spur density in the terminal portion and a few basal non-spur fruit buds.

Figure 4. Year 3—first season growth forms fruiting spurs, with more flower buds per spur (and greater spur density) in the terminal portion.

Long et al., 2015 PNW 667

- Leaf populations photosynthesize at the same rate irrespective of their origin (i.e., current, 1yr-old, 2+ yr-old
- ~200 cm² of LA per fruit is required to attain commercial fruit size (i.e., 4-5 leaves/fruit)
- Increase leaf area with late fall foliar urea or early spring (green tip) GA or GA/BA to increase CHO

Sweet Cherry Leaf Area and Location Effects

• Large healthy leaves, in close proximity of fruit, are critical for fruit to achieve maximum size and quality

Data: Ayala and Lang, 2004 Slide compliments of G.Lang

When to apply RDI to sweet cherry trees? PH: Possibly 50% ET but caution required for applying extreme stress during floral bud

development as well as limiting CHO reserves carning electron managraphs of almond bud apices showing initiation of fload organs during a station initiation. (A) Stage is a solution to according to the proof of the proof prime to a solution of the solution of Inflorescence meristems of Peach and Sweet Cherry have both been shown to undergo initiation (early-mid summer) and carpel development (late summer) (Bustamente-Garcia, 1980; Diaz et al., 1981; Handley and

Johnson, 2002)

Physiological fruit disorders related to water stress

Twinning, doubles and deep suture of peach, plum and sime sweet cherry due to incomplete or retarded floral bud differentiation and carpel development