How rational fertilization can improve sustainability and profitability of fruit farms

Juan Carlos Melgar Department of Plant and Environmental Sciences

UNITY E R SITY

Consumers demand for high fruit quality standards Yield is a great concern for growers Societal concerns about over-use of inputs

Reconcile high yield goals with minimal negative impacts on the environment

Published: January 1995

Nitrogen fertilization management in orchards to reconcile productivity and environmental aspects

M. Tagliavini, D. Scudellazi, B. Marangoni & M. Toselli

Fertilizer research 43, 93–102 (1995) Cite this article

183 Accesses 53 Citations Metrics

Causes and Consequences of Overfertilization in Orchards

in HortTechnology

Authors: Steven A. Weinbaum¹, R. Scott Johnson¹, and Theodore M. DeJong¹

View Less -

¹ Department of Pomology, University of California, Davis. CA 95616-6683.

DOI: https://doi.org/10.21273/HORTTECH.2.1.112b Page Count: 112b–121 Volume/Issue: Volume 2: Issue 1 Article Category: Research Article Online Publication Date: Jan 1992

In years with high occurrence, losses exceed 60% of the fruit of mid-season cultivars

Κ Mg Ca Mg/K Ca/K Ca/Mg K/(Ca+Mg) (K+Mg)/Ca

Photo: V. Fernandez, 2011

Scarletprince trial

Scarletprince trial

		Mg (%)	Mg/K
	Control (peach w/o bronzing)	0.067 b	0.035 b
2020	Areas with no bronzing (peach with bronzing)	0.068 b	0.036 b
	Areas with bronzing (peach with bronzing)	0.076 a	0.041 a

Scarletprince trial

		Mg (%)	Mg/K
Control (peach w/o bronz Areas with no bro (peach with bronz Areas with bronzi (peach with bronzi	Control (peach w/o bronzing)	0.067 b	0.035 b
	Areas with no bronzing (peach with bronzing)	0.068 b	0.036 b
	Areas with bronzing (peach with bronzing)	0.076 a	0.041 a
	Control (peach w/o bronzing)	0.159 c	0.095 b
2021	Areas with no bronzing (peach with bronzing)	0.168 b	0.097 b
	Areas with bronzing (peach with bronzing)	0.188 a	0.111 a

PF-23 trial

		Mg (%)	Mg/K
	Control (peach w/o bronzing)	0.238 b	0.367 b
2021	Areas with no bronzing (peach with bronzing)	0.241 b	0.379 b
	Areas with bronzing (peach with bronzing)	0.271 a	0.395 a

Nutrient concentration

Fertilizer (N) = f_x (...)

- fertilization management (timing, number of applications)
- crop load/yield
- ripening season
- pruning
- tree age and health
- environmental conditions
- soil health/management

Artificial intelligence and precision agriculture technology

Fertilizer (N) = f_x (...)

- fertilization management (timing, number of applications)
- crop load/yield
- ripening season
- pruning
- tree age and health
- environmental conditions
- soil health/management

May	June	July	August	September
		_		

Nutrient concentration (% D.W.) in fruit Mg K Ν Ca Ρ Early **0.9** a 0.2 a 2.0 a 0.03 0.3 a 0.2 b Mid 1.4 b 0.2 a 0.6 b 0.03 1.4 b 0.6 b 0.1 b Late 0.03 0.2 a 1111. 1111111 11111111

1

Zhou Q and Melgar JC. 2019. J. Plant Nutr. Soi Sci. 182:20

Nutrient allocation (%)

		Ν	Р	К	Са	Mg
Pruning wood	Early	55.7	50.3	43.0	53.9	41.6
	Mid	50.0	45.9	32.4	58.6	36.6
	Late	49.6	44.9	27.4	53.3	32.5
Fruit	Early	-	-	-	-	-
	Mid	27.1	29.3	42.2	1.0	23.4
	Late	27.3	32.5	45.0	1.1	23.7
Fallen leaves	Early	23.2	24.3	29.6	45.5	44.0
	Mid	20.0	22.2	23.3	40.4	38.9
	Late	19.9	18.1	25.5	45.6	42.6

Nutrient allocation (%)

		Ν	Ρ	K	Са	Mg
Pruning wood	Early	55.7	50.3	43.0	53.9	41.6
	Mid	50.0	45.9	32.4	58.6	36.6
	Late	49.6	44.9	27.4	53.3	32.5
Fruit	Early	-	-	-	-	-
	Mid	27.1	29.3	42.2	1.0	23.4
	Late	27.3	32.5	45.0	1.1	23.7
Fallen leaves	Early	23.2	24.3	29.6	45.5	44.0
	Mid	20.0	22.2	23.3	40.4	38.9
	Late	19.9	18.1	25.5	45.6	42.6

Nutrient allocation (%)

		Ν	Р	K	Са	Mg
Pruning wood	Early	55.7	50.3	43.0	53.9	41.6
	Mid	50.0	45.9	32.4	58.6	36.6
	Late	49.6	44.9	27.4	53.3	32.5
Fruit	Early	-	-	-	-	-
	Mid	27.1	29.3	42.2	1.0	23.4
	Late	27.3	32.5	45.0	1.1	23.7
Fallen leaves	Early	23.2	24.3	29.6	45.5	44.0
	Mid	20.0	22.2	23.3	40.4	38.9
	Late	19.9	18.1	25.5	45.6	42.6

Resorbed N provide up to 70% of the N requirement of forming fruits and shoots

Trees pruned early in Fall

Trees defoliated due to leaf rust in October

Potassium concentration in mature and old trees

		2015	2016	2017
Pruning	Mature	0.9 a	0.4 b	0.7 a
wood	Old	0.8 a	0.6 a	0.8 a
Fallen	Mature	1.9 a	2.6 a	2.9 a
leaves	Old	1.6 b	1.6 b	1.7 b

Older trees have an increased potential storage and seem to be more efficient at resorbing nutrients

Zhou Q and Melgar JC. 2020. HortScience 55:560-564

Overfertilization with K

- Two high potassium rows (1 and 5)
- On standard K row (3)
- Buffer rows (2 and 4) between the treatments

Leaf nutrient concentration (%) - 2018

	К	Са	Mg
Standard K	3.4 b	1.7	0.2
5x K	4.0 a	1.5	0.2

	K	Са	Mg
Deficiency range	0.75-1.0	<1.0	0.10-0.30
Sufficiency range	2.0-3.0	1.5-3.0	0.30-0.80

We then decided to cut the standard K rate and do not fertilize with K until K concentrations go to values within the sufficiency ranges

Leaf nutrient concentration (%) - 2020

	K	Са	Mg
Standard K	3.1	2.2	0.3 a
5x K	3.4	1.9	0.2 b

	К	Са	Mg
Deficiency range	0.75-1.0	<1.0	0.10-0.30
Sufficiency range	2.0-3.0	1.5-3.0	0.30-0.80

CROPS > ORCHARD CROPS

Lack of winter chill temps a concern for fruit growers

Tuesday, October 31, 2017

Apple growers in Texas, New Mexico and Arizona s winter chill hours, loosely defined as the number o hours the temperature lingers between 32 and 45 degrees, are critical in order for trees to bud. Peac also at risk.

----> Oldest newspaper in South Carolina -----"He will dag to the pilling of the temple of our tobertice and if we made full we will percebe another the raine."

HOME	COLUMNISTS	S COMM	UNITY	NEWS	OBITS	OP-ED	PAGE TWO	PHOTO (
ABOUT	ADVERTISING	SUBSCRIBE	CONTAC	TUS SO	OCIAL MEDIA	GAS PRICE	S NEWS TIPS	ARCHIVE

What Happens to Peaches When the Chill is Gone?

By Edgefield Advertiser on January 24, 2013 · Comments Off on What Happens to Peaches When the Chill is Gone?

El Niño year

La Niña year

Source: http://www.srh.noaa.gov/jetstream/

How do environmental conditions affect nutrient reserves? If senescence is delayed, do trees recover more nutrients?

Effect of <u>delayed senescence</u> in N concentration in reserve tissues during winter

Tissue	Greenhouse	Outside
1-year shoots	1.86***	1.57
2-year shoots	0.97**	0.85
Stem	0.72***	0.61
Below graft union	0.92***	0.73
Large roots	1.77***	1.39
Fibrous roots	2.61	2.29

n = 60-63. Analyzed with analysis of variance (ANOVA)
*** P < 0.001 ** P < 0.01</pre>

Did N come from the leaves?

Effect of <u>soil moisture</u> in N concentration in reserve tissues during winter

Tissue	100% ET	50% ET
1-year shoots	1.63	1.80*
2-year shoots	0.86	0.95*
Stems	0.62	0.72***
Below graft union	0.76	0.89***
Large roots	1.48	1.68*
Fibrous roots	2.27	2.64***

n=60-63. Analyzed with analysis of variance (ANOVA) *** P < 0.001 * P < 0.05

Leaf analysis in summer

Acknowledgments

SC Peach Council Southern SARE SC Department of Agriculture **Musser Fruit Research** Farm crew Qi Zhou, Brian Lawrence

Questions?

jmelgar@clemson.edu