

Overview

- 2-Dimensional Peach Fruiting Wall Trials (est. 2019 and 2021)
 - Training
 - Benefits
 - Yields
- Cold Hardiness Trials
 - Metabolomics
 - Current and Future study
- Cold Hardiness Modelling across different locations

2-Dimensional Peach Training Systems (2019)

- 4 Training systems
 - Single leader, Bi-axe U, Bi-axe V, and Inline Quad
- Rootstocks
 - Medium-high to low vigor rootstocks
 - Krymsk86[©], Hansen 536, Lovell, Guardian, Rootpack 20, Rootpack 40, Controller 6

2-Dimensional Peach Training Systems

• Trying to diffuse vigor through proper training.

Yields 2023 (5th Leaf)

- Best Performers overall per training system
 - Best performers are those with good fruit size and quality in addition to yields

Training System	Rootstock	Average of Yield ton/acre	Average of Avg. Fruit size (g)	Average of Total No. of Fruit (Both Pick)
Single Leader SSA	K86	10.4	170	54
Bi-axe U	Lovell	15.5	183	118
Bi-axe V	K86	14.3	175	114
Inline- Quad	Hansen	15.0	157	136

2-Dimensional Peach Training Systems (2019)

- 4 Training systems
 - Single leader, Bi-axe U, Bi-axe V, and Inline Quad
- Rootstocks
 - Medium-high to low vigor rootstocks
 - Krymsk86[©], Hansen 536, Lovell, Guardian, Rootpack 20, Rootpack 40, Controller 6

2-Dimensional Peach Training Systems (2019)

- Expected benefits
- Better light penetration into canopy
 - Better fruit quality
 - Fruit set closer to scaffold= more efficient use of space
 - More labor efficient
 - Pruning
 - Thinning
 - Harvesting
 - More mechanizable
 - Better spray penetration
 - Possibly more uniform ripening

Inline Quad

(2 ft upright spacing)

Inline Quad

(3 ft upright spacing)

• This training system is in a 2021 trial

Inline Quad- Early growing season

Inline Quad- Early establishment of cordon

Bi-axe U (6ft spacing)

SSA- Super Slender Axe (3 ft spacing)

Establishment- Cytospora Protection

- Young tree Cytospora treatment through first 3 years
 - 2 parts Latex paint (white): 1 part water
 - Captan
 - Topsin
 - Sprayed post-pruning
 - Graco Sprayer

Paint Sprayer

Conventional Only, not organically certified

Irrigation Monitoring

Daily Demand by block (hours of irrigation demand each day)

Fertility

- Nitrogen- 45-60 lbs of N per acre (Urea and Prosol 20-20-20)
 - Prosol is 20-20-20 + micro nutrients
- Iron- 5 lb per acre Ferriplus (EDDHA chelated Iron) (In May)
 - This is the most effective **Soil applied** Iron fertilizer chelator in ph 8+ soils
 - We also foliar apply amino acid chelated micros (Fe, Zn, Mn) if chlorosis appears later in season
- Leaf tissue monitoring in early July to check fertility levels

Summer 2022

2-Dimensional Peach Training Systems (2019)

Other thoughts from this trial

- We found harvest much more efficient in the planar systems
- Picked orchard in only 2 picks rather than 3
- Would accommodate picking/pruning platforms very well for extra labor efficiency
- Yielding over 15 tons/ac in some cases in 4th leaf with 30% less water than sprinkler

Yields 2023 (5th Leaf)

- Best Performers overall per training system
 - Best performers are those with good fruit size and quality in addition to yields
 - U Diffusing leader vigor consistently better

Training System	Rootstock	Average of Yield ton/acre	Average of Avg. Fruit size (g)	Average of Total No. of Fruit (Both Pick)	Diffusion Factor Trunk/Leader
Single Leader SSA	Krymsk 86	10.4	170	54	2.1
Bi-axe U	Lovell	15.5	183	118	3.0
Bi-axe V	Krymsk 86	14.3	175	114	3.1
Inline- Quad	Hansen	15.0	157	136	4.5

Cold Hardiness

What metabolic changes are associate with changes in cold hardiness, and dormancy stages in peach floral buds?

Prenol Lipids

- Includes terpenes, terpenoids and xanthophylls
- Very highly expressed in cold hardy cv
- These were the only three significantly different prenol lipids between cultivars

Prenol Lipids

- Different prenol lipids have been found to modulate stress in tea (Zhao et al., 2019, and Zhou et al., 2020)
- Comparison of combined expression of all significant prenol lipids
- Significantly higher in cold hardy CV at each of the acclimation and maximum hardiness dates

Amino Acids- Nitrogen is not just for vigor

- Proline known to be a response to cold stress, and related to cold tolerance in many plants
- We found it to be highest throughout much of the dormant season, when cold hardy cv was more frost tolerant, which was during January
- Osmolyte, signaling molecule, antioxidant
- Critical to major metabolic pathways:
 - TCA cycle, pentose-phosphate, and phenylpropanoid pathways

Outcomes

Recent Results

Spray Trial Inspired by amino acid findings

- Bloom time Amino acid treatment, immediately (10 hr) before frost
- Increased Fruit Set 2x when sprayed at full bloom immediately before bloom frost (25.9°F)
- Small trial, Needs to be tested more extensively

P = 0.0059

Recent Results

Spray Trial Inspired by metabolic analysis findings

	Yield lb per tree	Fruit Count		
Amino Acid	40.6a	88a		
Control	13.5b	29b		
	P=0 0002	P=0 0002		

Cold Hardiness

Fall hardiness spray experiments

- Protone (Abscisic Acid or ABA)
 - Can be useful if a dangerous cold event is predicted in fall as in 2020
 - This does increase the risk of spring frost, with earlier bloom
- Ethephon (@ 50%+ leaf fall)
 - 3-day bloom delay
 - Can cause gummosis and damage trees if not used carefully

Overview

 Question: if we apply both can we shut down early, and bloom late as well

• In 2023, the combination of 10/7 ABA and 10/25 (50%+ leaf fall) Ethephon resulted in a bloom date 3 days later than untreated trees

Future Strategy

- 3 stage approach:
 - Early Dormancy
 - Late Bloom
 - Extra Bloom hardiness
- ABA: how warm does it need to be to enter dormancy faster with ABA application
- Ethephon: In the future we are experimenting with lower concentrations of ethephon and later application times, to minimize risks to tree health
 - ACC is another possible alternative to ethephon, that is safer for trees
- Amino Acid Treatment: Can we replicate success amino acid sprays during bloom to boost hardiness prior to bloom frosts

Cold Hardiness Modelling

Cold hardiness data

Model training data collected over the last 4 years

- 80 dates per cultivar
- Each date comprised of 75 lethal temperatures
- Roughly 6000 lethal events per cultivar
- LT₅₀ is estimated for each cultivar and date
 - This is our independent variable
 - LT₅₀ is more stable than other values

Model Prediction Recap

- LT₅₀ are predicted very accurately
- RMSEP= error (°C)
- Endodormancy validation data black
- Ecodormancy validation data red
- Yearly Prediction curves by variety showed great adaptation to different seasonal weather stimuli
- Black line = model prediction
- Black dots = DTA Hardiness data

Modelling

- How well do predictions hold for other Colorado Locations?
- 3 Other locations with weather data across 4 years
 - Roger's Mesa, Olathe and Palisade
- Use the weather from the other sites to predict the hardiness using our models

Result

- Average Accuracy = +/-1.5°F
- We consider this accurate enough to base wind machine decisions on
 - Wind machines with a decent inversion usually increase temps 2-4 degrees F

Next Step...

- Next step is linking Coagmet weather stations, daily temperature data with weather models
- Live cold hardiness predictions based on specific weather data from each growing zone
- Collaborating with a computer science colleague on campus

Cold Hardiness Phenology

Bloom Temperature Threshold Recap

- Older charts are based off Elberta
- I had noticed for several years there were differences in what damage I expected to see at different stages
- Tested each stage of 'Cresthaven' (small flowers, from MI) and 'Suncrest' (Large flowers from CA)

'Suncrest'

'Cresthaven'

LT₅₀ Phenology Stages (30 min at these temps)

CSU_Pomology THE COLLEGE of AGRICULTURAL SCIENCES

PEACH FLORAL BUD PHENOLOGY STAGES & CRITICAL TEMPERATURES (°F)

'Suncrest'

Bud Stage	1-First Swell	2-Green Calyx	3-Red Calyx	4-Pink Tip	5-First Bloom	6-Full Bloom	7-Petal Fall	8-Shuck Split
LT ₁₀ (°F)	19	26	27	27	27	28	28	28
LT ₅₀ (°F)	10	18	22	23	24	26	27	27
LT ₉₀ (°F)	1	10	17	20	22	24	25	25

'Cresthaven'

Relationships: Moisture, Hardiness, and Stage

Moisture Content and Cold hardiness

- Both Suncrest (large flower) and Cresthaven (small flower) had the same freezing point at equal phenology stage.
- Suncrest started progressing through stages earlier, and were susceptible longer.

Phenology and Cold hardiness

Phenology and Moisture Content

Any Questions?

